jet fuel Tag

RICHLAND, Wash. – A team from Washington State University Tri-Cities whose business plan is to commercialize a WSU-patented jet fuel technology developed by WSU Tri-Cities professor Bin Yang’s lab has advanced to the University of Washington Business Plan Competition’s “sweet 16” round.

Libing Zhang presents during the UW Business Plan Competition

WSU Tri-Cities’ Libing Zhang presents during the UW Business Plan Competition

According to the university website, the goal of the UW Business Plan Competition is to promote student ideas and new venture creation and provide an opportunity for business and science students to present new business plans to Seattle-area venture capitalists, entrepreneurs and investors.

The team, composed of Libing Zhang, a recent doctoral alumna, and master’s in business administration students Manuel Seubert and Taylor Pate, presented the process of taking lignin, a waste product in the cellulosic ethanol biorefineries and pulping process that is considered one of the most abundant renewable carbon sources on Earth, and turning it into an environmentally-friendly, cheap jet fuel that can potentially reduce the carbon emissions for commercial airlines.

The WSU Tri-Cities team advanced from an initial pool of 82 teams in the screening round of the competition, which was then narrowed to a pool of 36 teams in the investment round before the team advanced to the sweet 16. During the investment round, each team had approximately four hours of face time with entrepreneurs, angel investors, venture capitalists and competition alumni from the Seattle area.

Last month, the same WSU Tri-Cities team placed third at the Alaska Airlines Environmental Innovation Challenge. Zhang is also the entrepreneurial lead on a National Science Foundation I-Corps lignin-to-biojetfuel project, which was awarded to Yang and his team.

Paul Skilton, WSU Tri-Cities associate professor of management, and Yang are advisers for the WSU Tri-Cities team.

The sweet 16 round of the UW Business Plan Competition kicks off May 25, followed by the final round that afternoon. The final round is open to the public. Prizes will be awarded later that evening at the competition dinner at MOHAI in South Lake Union.

By Maegan Murray, WSU Tri-Cities

RICHLAND, Wash. – A team from Washington State University Tri-Cities took third place among 21 teams at the Alaska Airlines Environmental Innovation Challenge’s finals this week for their creation and business model presentation of a technology that converts lignin, a natural byproduct of plant-based materials, into biojet fuel.

Photo courtesy: Matt Hagen / UW Buerk Center for Entrepreneurship
Libing Zhang talks with people at the Alaska Airlines Environmental Innovation Challenge.

During the challenge, interdisciplinary student teams define an environmental problem, develop a solution, design and build a prototype, create a business plan that proves their solution has market potential and pitches their idea to 170 judges from throughout the Northwest who have expertise in cleantech, as well as to entrepreneurs and inventors, at a demo-day event.

The WSU Tri-Cities team, composed of postdoctoral researcher Libing Zhang and Manuel Seubert, a master’s in business administration student, advanced to the finals from an initial pool of 29 teams during the first round of the competition.

Paul Skilton, WSU Tri-Cities associate professor of management, and Bin Yang, WSU Tri-Cities associate professor of biological systems engineering, advised the team. The WSU Tri-Cities team also worked regularly with researchers at the Pacific Northwest National Laboratory to prepare for the competition.

The team was presented with the Starbucks $5,000 prize for their third-place ranking in the final round of the competition.

Advancing biofuels

Zhang, team leader for the challenge, said the main benefits for their technology is that it takes lignin, a waste

Photo courtesy: Matt Hagen / UW Buerk Center for Entrepreneurship
Manuel Seubert presents at the Alaska Airlines Environmental Innovation Challenge.

product in the biorefineries and pulping process that is considered one of the most abundant renewable carbon sources on Earth, and turns it into an environmentally-friendly, cheap jet fuel that can potentially reduce the carbon emissions for commercial airlines.

“I see several advantages of the technology and hope we can scale it up for commercialization, which will help commercial airlines to achieve their goals in reducing greenhouse emissions,” she said.

Developing a commercial product

Seubert, team co-leader for the challenge, said their goal with the competition was to capture people’s attention for the value of their technology, while using the experience as a learning opportunity for their future in developing the lignin-based jet fuel product into a commercial business.

“The next challenge is to secure funding so that we can scale it up to an industrial scale,” he said. “We are

Libing Zhang displays a container of lignin

Photo courtesy: Matt Hagen / UW Buerk Center for Entrepreneurship
Libing Zhang displays a container of lignin

actively looking for funding sources at this point and are thinking about establishing a limited liability company, which will allow us to pursue small business grants.”

Zhang said raising awareness about the product was a crucial part of the competition experience.

“We want people to know that the technology for converting lignin to biojet fuel has a commercial value,” she said. “It is encouraging knowing that people care about the technology and see its potential for reducing the carbon footprint. Now, we hope to take the technology to the next level in the business world.”

Zhang is also the entrepreneurial lead on a National Science Foundation I-Corps lignin-to-biojetfuel project, which was awarded to Yang and his team.

Skilton said the project represents an excellence illustration of the cutting-edge, hands-on programming students experience at WSU Tri-Cities.

“This is an example of the kind of integrated project team work our MBA students come to WSU Tri-Cities to do,” he said.

The Alaska Airlines Environmental Innovation Challenge is the creation of the Buerk Center for Entrepreneurship in the Foster School of Business, in partnership with the University of Washington’s College of Engineering, College of the Environment, Clean Energy Institute, College of Built Environments and the Department of Biology.

Contacts:

Libing Zhang, WSU Tri-Cities recent doctoral graduate and postdoctoral researcher, libing.zhang@wsu.edu

Manuel Seubert, WSU Tri-Cities master’s in business administration student, manuel.seubert@wsu.edu

Maegan Murray, WSU Tri-Cities public relations specialist, 509-372-7333, maegan.murray@tricity.wsu.edu

RICHLAND, Wash. – Researchers at Washington State University Tri-Cities have been awarded a National Science Foundation I-Corps grant to explore the market potential of their biojet fuel research.

Bin Yang, associate professor of biological systems engineering and principal investigator for the grant, and his team have spent several years developing a process for transforming lignin, a polymer that makes plants woody and rigid, and currently a waste product in the biofuels production process, into hydrocarbon molecules that can one-day be certified as jet fuel.

26272133420_a85b9108f1_zYang said by leveraging research results from projects funded by the Defense Advanced Research Project Agency, the National Science Foundation, the Department of Energy, the Department of Transportation, the Joint Center for Aerospace Technology Innovation and The Boeing Company, he and his team have successfully demonstrated a new, water-based process for deconstructing and recovering lignin from biomass and converting it into jet fuel-range hydrocarbons that may be certified as jet fuel in the near future. Yang currently holds a patent on the process.

“Our ultimate goal is to demonstrate a flexible catalytic process that selectively converts all the carbon in the lignin into jet fuel-range hydrocarbons at minimal cost,” he said.

Libing Zhang, a WSU Tri-Cities postdoctoral research associate and the entrepreneurial lead of the project, said currently commercial airlines are facing pressure to reduce emissions, which is why they may have an interest in seeing a lignin-derived alternative fuel brought to market.

“The airlines see alternative jet fuel as a strategic need, helping guarantee smooth business operations and a long-term and sustainable jet fuel supply,” Zhang said. “Our conversion process can potentially reduce jet fuel cost to end users by using lignin waste from refineries and less expensive catalytic upgrading to jet fuel.”

Zhang said the NSF I-Corps program helps leading researchers develop a business platform for their research and technology that could one-day change the world, while not trying to “reinvent the wheel” by recreating processes and strategies that are already working well within the industry.libing-zhang-biofuels-research-nsf-i-corps-web-3

For the NSF I-Corps grant, Yang and his team are working under the mentorship of Terri L. Butler from the University of Washington for the business aspects of the project.

“The NSF I-Corps program encourages researchers to step out of the academic environment and listen to the needs of industry,” Butler said. “The researchers can then determine if their technology solves an important problem or if their research efforts should head in a different direction. This is the approach our team has taken as we work on possible business models for our biojet fuel technology while considering the needs of customer segments, key partners, cost structures and revenue streams.”

WSU is leading the nation in biofuel production. In November, Alaska Airlines made the first commercial flight using alternative jet fuel from forest residuals produced through WSU-led Northwest Advanced Renewables Alliance. Read more here.

WSU also has an NSF I-Corps site led by the Voiland College of Engineering and Architecture that provides training and funding to find commercial applications of new business ideas and technologies. The free site program promotes entrepreneurism of faculty, student and staff by preparing participants for submission of a proposal to NSF to become an I-Corps team. Learn more here.

 

News media contacts:
Bin Yang, WSU Tri-Cities biological systems engineering, 509-372-7640, binyang@tricity.wsu.edu
Libing Zhang, WSU Tri-Cities postdoctoral research associate, libing.zhang@wsu.edu
Maegan Murray, WSU Tri-Cities public relations, 509-372-7333, maegan.murray@tricity.wsu.edu