Increasing the number of Underrepresented Minorities (URMs) in the U.S. STEM workforce would solve many of the skills gaps that confront our economy. Ethnic and gender disparities in STEM academic achievement carry over into lower participation by many URMs in high-paying STEM jobs. Selected data provided by the National Action Council for Minorities in Engineering, Inc. (NACME) help illustrate the challenge. For more information on URMs in engineering education and engineering careers, visit www.nacme.org/research-publications.

Figure 1: Changing Demographics of the U.S.¹

![Pie chart showing changing demographics of the U.S. between 2014 and 2050.](image)

Figure 2: Percentage of Public and Private High School Graduates Taking Calculus Courses in High School,

![Bar chart showing percentage of high school graduates taking calculus.](image)

Figure 3: Percentage of Students Meeting ACT College Readiness Benchmark Scores, 2014³

![Bar chart showing percentage of students meeting ACT benchmark scores.](image)

Figure 4: Engineering Bachelor’s Degrees Earned, 1977-2013⁴

![Line graph showing engineering degrees earned from 1977 to 2013.](image)

Endnotes
The U.S. population is becoming more diverse each year. By 2050, URMs will represent more than 40 percent of the population, and there will be no majority race. The demand for qualified STEM professionals is high, but the supply of STEM workers to fill these positions is at risk if underrepresented groups are not engaged in these fields. The figures below show that African Americans, Latinos, American Indians, Alaska Natives, and women are underrepresented in all levels of engineering education and in the engineering workforce.

Figure 7: Latinos in Engineering

Figure 8: Women in Engineering

Endnotes